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HOW AI MODELS ARE TRANSFORMING SCIENCE 
  
In the landscape of modern scientific research, artificial intelligence (AI) has emerged as 
a transformative force, fundamentally altering how researchers conceptualize, conduct, 
and validate their work. The convergence of computational power, advanced algorithms, 
and vast datasets has driven AI from theoretical possibility to practical necessity across 
scientific disciplines. 
 
This report of over 310,000 journal articles and patents can inform our views about the 
rise of AI for science and the current state and trajectory of AI integration in scientific 
research for researchers, institutions, and policymakers. 
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Executive summary 
 
In the landscape of modern scientific research, artificial intelligence (AI) has emerged as a transformative 
force, fundamentally altering how researchers conceptualize, conduct, and validate their work. The 
convergence of computational power, advanced algorithms, and vast datasets has driven AI from 
theoretical possibility to practical necessity across scientific disciplines. 
 
This revolution addresses several longstanding challenges that have limited scientific progress: the 
overwhelming volume of data generated in fields like genomics, medicine, and materials science; the 
extensive time and costs of processes such as drug discovery; and cognitive limitations in hypothesis 
generation. AI offers new and promising pathways to overcome these challenges and find faster 
breakthroughs across many scientific disciplines. 
 
For example, in biomedical sciences, AI has revolutionized protein structure prediction, accelerated the 
drug discovery process, and enabled personalized medicine. Similarly, in material sciences, AI is 
accelerating the discovery of novel materials. These advancements have paved the way for self-driving 
laboratories and inverse design frameworks, which are changing the scientific method itself. AI has also 
significantly advanced process optimization by enabling real-time experimental adjustment to improve yield 
and efficiency while reducing waste and cost. 
 
We performed a quantitative analysis of the CAS Content CollectionTM, the largest human-curated 
repository of scientific information, to understand the implementation and impact of these technological 
advancements on scientific discovery. We systematically analyzed over 310,000 journal articles and 
patents from the CAS Content Collection spanning the years 2015-2025, employing advanced analytical 
techniques to identify AI-related publications and their associated methodologies, institutions, and research 
domains. 
 
Our study explores AI method distribution across scientific fields with deep-dive analyses of two critical 
domains: biomedical sciences and materials science. These analyses detail dominant concepts, co-
occurrence patterns of AI methods, and notable substance classes. Additionally, we investigate AI's role in 
optimizing industrial processes and emerging applications.  
 
These findings provide essential insights into the current state and trajectory of AI integration in scientific 
research, offering valuable guidance for researchers, institutions, and policymakers in understanding 
technological adoption patterns, identifying collaboration opportunities, and making informed strategic 
decisions about future AI investments and research directions. 
 

  

https://www.cas.org/industries/drug-discovery/challenges/how-predictive-models-empower-drug-discovery
https://link.springer.com/article/10.1007/s40820-024-01634-8
https://www.cas.org/cas-data
https://www.cas.org/resources/cas-insights/ai-for-science-trends
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The landscape of AI models in science   
 
To understand the context in which certain models are selected and their impact, we conducted a 
comprehensive analysis of scientific publications, including journals and patent families, that have 
incorporated AI-based methods. The visualization of the entire landscape highlights the increasing 
integration of these technologies across scientific disciplines as more models and functionalities are 
developed (see Figure 1). 
 

 
 
Figure 1: Landscape of AI methods applied across scientific disciplines. Data includes journal and patent 
publications for the period 2015-2025, with 2025 data encompassing January to March. Source: CAS 
Content Collection. 
 
The main branches of this visualization include:  
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Classification, regression, and clustering models  
 
Classification models are designed to predict discrete labels or categories and are especially effective in 
handling high-dimensional data and providing interpretable results. Common models include Decision 
Trees (DT), a model which classifies outcomes by recursively splitting data into branches. Random Forest 
(RF) is an ensemble of decision trees that reduces overfitting by averaging predictions. Another common 
model, Support Vector Machine (SVM), finds the optimal boundary between classes, while K-Nearest 
Neighbors (KNN) classifies the majority class of nearest neighbors.  
 
These models are widely applied to labeled datasets (supervised learning) with categorical outcomes, such 
as spectroscopy, microscopy, or omics data with known classes. Example applications include classifying 
disease types from gene expression or imaging data, predicting material classes, and classifying 
compounds based on toxicity or reactivity. 
 
Regression models predict continuous numerical values, making them ideal for forecasting and 
optimization. Some of the regression models observed in publications are Linear Regression, Logistic 
Regression, Support Vector Regression (SVR), and Symbolic Regression. These models are suited for 
numerical data from experiments, simulations, or time-series data from sensors or instruments. 
Applications include predicting energy levels, decay rates or particle trajectories, estimation of reaction 
yields, molecular properties, modeling temperature, precipitation, predicting conductivity, hardness, and 
band gaps. 
 
Unlike classification and regression, clustering models uncover natural groupings in unlabeled data, 
revealing hidden structures and supporting exploratory analysis (unsupervised learning). These models are 
effective for high-dimensional, unlabeled datasets such as imaging, spectral, and molecular data. Suitable 
scientific data for this group includes but is not limited to grouping genes or samples based on expression 
profiles and discovering new material families from structural data. 
 

Artificial neural networks (ANNs) 
 
ANNs are a class of machine learning (ML) models designed to learn complex patterns through 
interconnected layers of artificial neurons. They are powerful for modeling intricate, non-linear relationships 
in data. As a result, they form the basis for deep learning and are the foundation of modern AI with 
specialized architectures such as Recurrent Neural Networks (RNNs) for sequential data, Long-Short Term 
Memory (LSTM), an enhanced RNN that better captures long-range dependencies, and Gated Recurrent 
Units (GRUs) which is a simplified version of LSTMs with fewer parameters.  
 
These models are suitable for sequence and time series data such as gene expression, protein sequences, 
physiological signals, climate data, particle physics, and sensor network data. They often enhance image-
text alignment by leveraging knowledge maps — structured representations of domain-specific concepts 
and their relationships — which helps to bridge the semantic gap between visual data (like medical images) 
and textual descriptions (such as clinical notes or diagnostic reports). Their adoption has surged in areas 
like drug discovery and development, precision medicine, medical imaging, material discovery and design, 
energy storage, manufacturing, and quality control. 
 

Hybridized methods 
 
The comparison between ANNs and conventional ML models, such as classification, regression, and 
clustering, is not simply about which is better but rather about understanding their complementary roles. 
ANNs dominate where the data is complex and unstructured, where there are large training datasets, and 
when representation learning is required. Conversely, conventional ML remains strong where the data is 
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small, research problems require strict interpretability, and the inputs possess well-understood statistical 
relationships and require uncertainty quantification. 
 

Domain-specific models 
 
Although domain-specific models have fewer publications, they include groundbreaking work such as 
AlphaFold, a deep learning approach that achieved near-experimental accuracy in protein structure 
prediction. ESMFold is another interesting model that directly leverages protein language modeling to 
generate high-quality structure predictions directly from single protein sequences. 
 

Natural language processing (NLP) 
 
NLP is used to analyze, understand, interpret, and generate human language. It involves tasks like 
tokenization (breaking down text into smaller units called tokens, typically word or sub-word) that can be 
processed by algorithms. A common method for representing text is the Bag of Words (BoW) model, which 
converts text into numerical vectors based on word frequency, ignoring grammar and word order. Another 
key technique is Named Entity Recognition (NER), which identifies and classifies entities such as names of 
people, organizations, and locations within the text. 
 
There are extensive applications of NLP models in biomedical text mining and knowledge extraction, 
ranging from specialized language models pre-trained on biomedical literature (i.e., BioBERT, BioGPT) and 
electronic health record (EHR) analysis to the automated extraction of disease characteristics from clinical 
records and creating novel drug candidates using language models. In material science and chemistry, 
NLP has been used for synthesis protocol extraction, material property prediction, knowledge base 
construction, and inverse design.  
 

Large language models (LLMs) 
 
This transformative class of AI systems has revolutionized NLP and found extensive applications across 
scientific domains. LLMs are neural network-based systems that are trained on vast amounts of text data to 
learn statistical patterns of language. They are used in information extraction, summarization, knowledge 
graph construction, cross-domain integration, and generative applications. 
 
Widely adopted LLMs include Generative Pre-Trained Transformer (GPT), which drives ChatGPT and 
GPT-3.5 and GPT-4. Bidirectional Encoder Representations from Transformers (BERT) remains a top 
language model, maintaining strong academic interest due to its bidirectional context understanding and 
superior performance in question answering and sentiment analysis.  
 
BLOOM, a multilingual model, has emerged as a significant contributor to the research landscape. New 
models such as GEMINI developed by Google DeepMind and LLAMA from Meta AI are also becoming 
popular, as is Claude, developed by Anthropic. The latest generation of models Gemma, Falcon, Mistral, 
Qwen, and DeepSeek, launched between 2023 and 2025, show great promise for future developments. 
 
Several specialized LLMs for chemistry, life sciences, and material science are also making an impact, 
such as chemLLM, PharmaGPT, and MatSciBERT. 
 

  

https://www.nature.com/articles/s41586-021-03819-2
https://arxiv.org/abs/1810.04805
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Publication trends show AI’s impact on science 
 
As noted, we analyzed 310,000 documents in the CAS Content Collection related to AI in scientific 
research over the period 2015-2025. We noted steady growth over the entire period with prominent growth 
in the last five (see Figure 2). The rising number of patent families further suggests that AI is evolving from 
an emerging technology to an essential research tool across various industries. 
 

 
 
Figure 2: Yearly trends for journal articles and patent families. Data includes publications for the period 
2015-2025, with 2025 data encompassing January to March. Source: CAS Content Collection. 
 

• Distribution by country/region and organization: China leads in publication volume (journals and 
patents), while the U.S., India, South Korea, and Japan also show steady growth in publications (see 
Figure 3). In terms of patents, China and India together contribute to more than 75% of the global 
patents in this field — the top 15 institutions in terms of patent filings are from China and India. Chinese 
universities dominate in terms of publication volume, with the average citation count for most of them 
ranging between 10 and 20. In contrast, MIT and Stanford boast significantly higher average citation 
counts of 32 and 66, respectively. This suggests that although China excels in quantity, U.S. 
universities are leading in terms of the quality and impact of their journal articles in the field of AI. 

 

 
Figure 3: Leading countries/regions by volume of AI-related publications. 
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• Distribution in particular publications: We analyzed publication volume and citation impact of 
leading scientific journals publishing AI-based research. Publication volume is dominated by Scientific 
Reports, Applied Sciences, and PLoS One. However, when considering the average citation count per 
article, Proceedings of the National Academy of Sciences (PNAS) stand out, demonstrating exceptional 
influence with nearly 50 citations per publication, despite having relatively modest publication volume. 
Other journals such as the Journal of Chemical Information and Modelling (JCIM), Bioinformatics, and 
Nature Communications also show remarkable average citation, significantly outperforming the journals 
with huge volume. This pattern suggests that while broad-scope journals like Scientific Reports publish 
the most AI-related research, specialized or prestigious journals like PNAS, JCIM, and Nature 
Communications publish more influential work that generates greater scientific impact.  

 

• Trends by scientific field: Numerous fields have been greatly impacted by AI, but several stand out 
for exponential growth in publications (see Figure 4): 
 

 
 
Figure 4: Publication trends per discipline between 2015-2024 for (A) journal articles and (B) patent 
families. Source: CAS Content Collection. 
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Among all disciplines, Industrial Chemistry & Chemical Engineering demonstrates the most dramatic 
growth in journal publications, with its trajectory reaching approximately 8% of the total documents by 
2024. This exceptional growth likely reflects the field's broad applications across manufacturing, process 
optimization, and industrial innovation, as well as its critical role in developing sustainable industrial 
processes and green chemistry solutions.  
 
Analytical Chemistry emerges as the second-fastest growing field in terms of journal publications, with the 
deep blue line showing robust growth throughout the period from 2019 onward. This strong growth pattern 
shows the field's fundamental importance across all areas of chemistry and its role in developing new 
measurement techniques, instrumentation, and analytical methods that support research across multiple 
disciplines. Energy Technology & Environmental Chemistry demonstrates solid growth, jointly ranking third 
among the fastest-growing fields along with Biochemistry. This reflects urgent global focus on climate 
change, environmental sustainability challenges, and emerging events. 
 
The remaining disciplines, including Physical Chemistry, Pharmacology, Toxicology and Pharmaceuticals, 
Organic Chemistry, Inorganic Chemistry, Natural Products, and Synthetic Polymers, all demonstrate 
modest but consistent increases in publication volume. These fields represent mature areas of scientific 
research where fundamental principles are well-established, yet continued investigation yields incremental 
advances and refinements. 
 
The patent family data presents a strikingly different landscape compared to journal publications, with 
highly varied and concentrated innovation patterns rather than the uniform growth seen in academic output. 
This contrast highlights the fundamental difference between academic research productivity and 
commercially viable innovation, where market forces, practical applications, and economic incentives play 
decisive roles in determining which scientific advances translate into patentable intellectual property. 
 
Among patents, Biochemistry shows exponential-like growth, reaching approximately 8% by 2024 and 
completely overshadowing all other disciplines. This dramatic patent activity reflects the intense 
commercial interest and investment in life science research in general and further boosted in response to 
the COVID pandemic, where commercial research was given significant funding. The biochemistry patent 
landscape is dominated by biomedical methods and shaped by innovations that merge molecular science 
with advanced healthcare technologies. Key domains include disease detection, medical imaging, 
wearable monitoring, and clinical decision support, all leveraging biochemical markers. Biochemistry also 
drives progress in neurological interfaces, genomics, biomarker discovery, signal processing, surgical 
guidance, and biomedical manufacturing, highlighting its central role in modern biomedical innovation.  
 
Based on our analysis, we found the majority of the AI-related publications are related to biomedical 
research and materials science. Hence, we conducted an in-depth analysis for these key research areas 
as these fields dominate the dataset, exhibit rapid AI adoption with notable annual growth rates, and yield 
higher citation impacts, indicating their scientific relevance. 
 

Applications of AI models in biomedical research 
 

Overview  
 
Biomedical research has faced ongoing challenges in complexity and costs that AI can now address. For 
example, decoding complex protein structures and interactions, the high costs and failure rates associated 
with drug development, and the intricacies of understanding multifactorial disease mechanisms all lend 
themselves to AI-based approaches.  
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The rationale behind this analysis was to ensure a representative sampling of the most significant research 
areas by using document frequency as an objective metric to identify key concepts. Specifically, we 
identified concepts that have generated substantial scientific interest and research investment using 
several AI/ML methods within the biomedical field (see Figure 5). 
 

 
 
Figure 5: Conceptual landscape of AI-driven Biomedical research publications from 2015-2025, organized 
into five distinct domains: Biochemistry, Modeling and Drug Design, Diagnosis, Diseases, and Therapy. 
Each domain encompasses 15 representative concepts, employing a color coding from red (highest) to 
blue (lowest), indicating document frequency. Source: CAS Content Collection. 
 
In the Biochemistry domain, protein sequences and structures, gene and gene expression and 
DNA/genomics have emerged as the most extensively studied concepts, utilizing diverse machine learning 
approaches. ML models thrive in these areas due to data abundance and standardization, especially in 
complex systems like protein hierarchies and gene regulatory networks. ML excels in tasks such as 
sequence-function mapping, protein family classification, domain prediction, structure-function analysis, 
tumor feature selection, gene interaction prediction in cancer, and clustering genes by expression in 
patterns in oncology, leveraging high-dimensional expression data with thousands of genes measured 

https://www.sciencedirect.com/science/article/pii/S0888754312000626?via%3Dihub
https://www.sciencedirect.com/science/article/abs/pii/S0020025524003918


11 

 

simultaneously, complex non-linear relationships between genes and phenotypes, and hierarchical 
organization of genetic regulatory networks. 
 
Advanced ML models like AlphaFold and BERT are used for protein structure prediction by learning from 
amino acid sequences and evolutionary patterns to predict 3D folding and functional domains. These 
models effectively handle complex spatial relationships and sequential inputs with long-range 
dependencies. 
 
In the Modeling and Drug Design domain, QSAR modeling dominates this field. It utilizes ML methods to 
extract molecular descriptors (i.e., physicochemical properties, fingerprints) from chemical structures for 
predicting biological activities and toxicity endpoints through supervised learning approaches. These 
methods excel with feature rich molecular descriptors, structure-activity relationships, and quantitative 
endpoints suitable for regression tasks. 
 
Molecular docking, the second most frequent concept, uses deep learning approaches (CNN and GNN) on 
3D structural data and molecular graphs to predict protein-ligand binding poses and affinities, leveraging 
spatial conformations, energy landscapes, and molecular interactions. Pharmacokinetics follows as the 
next focus area, using ML to learn from molecular descriptors, physiological parameters, and time-series 
data for predicting ADMET properties (Absorption, Distribution, Metabolism, Excretion, Toxicity) and drug 
clearance rates. 
 
Biomarkers dominate the Diagnostic domain where ML methods analyze high-dimensional genomics, 
proteomics, and metabolomics data to identify discriminative molecular signatures distinguishing disease 
states from healthy controls through feature selection and classification. AI methods are also used in 
prognosis research to analyze patient clinical data and treatment history for predicting survival times and 
disease progression through survival analysis techniques.  
 
Medical imaging contains data from X-rays, CT, MRI, and structured spatial information that is ideal for 
deep learning methods. CNNs are widely used to analyze radiological images for tumor detection, fracture 
identification, disease classification, and pathological conditions through automated pattern recognition. 
Imaging can also benefit from the ability of deep learning to extract multi-scale features and perform 
segmentation tasks, particularly in cancer diagnosis where it aids in tumor detection, classification, 
malignancy assessment, and risk prediction. 
 
In the Disease domain, cancer research received the highest attention, with various ML models applied 
based on the data types. Genomic and transcriptomic data are commonly analyzed using RF and SVM 
models for cancer subtype classification and treatment prediction. These tasks benefit from integrating 
multi-omics data, which captures diverse molecular layers, and from modeling the complexity of 
heterogeneous tumor microenvironments. 
 
Various algorithms are used in diabetes research for predicting diabetic complications and optimizing 
treatment protocols taking advantage of longitudinal monitoring data, complex interactions between lifestyle 
factors and genetics, and time-series prediction problems for glucose levels. In Alzheimer's disease, RF 
and SVM models are widely used for early prediction by analyzing neuropsychological test scores, 
biomarker levels (amyloid-beta, tau proteins), and demographic data to classify patients into healthy or mild 
cognitive impairment categories. 
 
In the Therapy domain, antitumor agents received the most research attention, employing ML methods for 
drug screening and activity prediction by analyzing molecular descriptors and chemical properties to 
identify compounds with potential anticancer activity. In chemotherapy, these methods predict treatment 
responses and toxicity by analyzing patient clinical data, genetic profiles, and tumor characteristics for 
personalizing drug selection and dosing protocols. Similarly, these models support immunotherapy by 

https://www.sciencedirect.com/science/article/abs/pii/S0969212624001369
https://www.nature.com/articles/s41598-021-93070-6
https://pubs.acs.org/doi/10.1021/acs.jcim.4c02122
https://www.cas.org/resources/cas-insights/16-billion-reasons-hope-how-biomarkers-are-reshaping-cancer
https://www.nature.com/articles/s41598-024-74057-5
https://www.archivesofmedicalscience.com/Prediction-of-Prognosis-and-Survival-of-Patients-with-Gastric-Cancer-by-Weighted,135594,0,2.html
https://www.nature.com/articles/s41598-024-61322-w
https://pubs.acs.org/doi/10.1021/acsomega.4c01195
https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-01225-8
https://www.mdpi.com/2075-4426/13/3/406
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0244773
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219774
https://www.sciencedirect.com/science/article/pii/S0753332223003062
https://cancerci.biomedcentral.com/articles/10.1186/s12935-025-03800-3
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analyzing patient immune profiles, tumor mutational burden, and biomarker expressions to predict 
response and optimize therapeutic outcomes, addressing the complexity of immune interactions and 
temporal dynamics.  

Co-occurrences of AI models and biomedical concepts 
 
Our analysis explores the co-occurrence patterns between biomedical concepts and various AI/ML 
methods, elucidating their strategic applications across the five domains (see Figure 6). 
 
 

 
 



13 

 

 
Figure 6 A and B: Sankey diagram illustrating the co-occurrence of AI methods and biomedical concepts 
from (A) 2015-2019 and (B) 2020-2024. Source: CAS Content Collection. 
 
Random Forest (RF) has emerged as the dominant AI method in biomedical research, showing 
remarkable growth and overtaking Support Vector Machine (SVM) between the two periods. RF shows 
strong co-occurrence with concepts across all the domains of biomedical sciences, particularly in 
biochemistry, diagnosis, and disease-related research. RF is used for protein function prediction and 
classification by analyzing amino acid composition, sequence motifs, and physicochemical properties to 
classify proteins into functional families. In biomarker discovery, RF is used to analyze high-dimensional 
genomics, proteomics, and metabolomics data. 
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Support vector machine (SVM) while growing steadily between the periods, maintains significant 
presence with proteins, gene expression, DNA and genomics, biomarkers, prognosis, medical imaging, 
and cancer research. In protein studies, SVM is used for protein classification and functional annotation by 
analyzing amino acid sequences, structural features, and physicochemical properties. It also predicts 
subcellular localization and identifies enzyme classes using kernel-based high-dimensional feature space 
mapping.  
 
In gene expression, SVM identifies genes involved in specific biochemical processes, classifies metabolic 
pathways, and predicts enzyme-encoding genes based on their expression patterns across different 
biochemical conditions and cellular states. For genomic variant classification, SVM processes DNA 
sequence features and annotations to distinguish pathogenic from benign mutations and identify disease-
associated genomic regions through high-dimensional feature analysis of nucleotide patterns and genomic 
context.  
 
In biomarker research, SVM supports identification, classification, and validation by integrating multiple 
biomarkers into predictive models for diagnosis, treatment response, disease progression risk assessment, 
and stratifying patients for personalized medicine approaches. SVM is used in cancer research to 
distinguish between cancer and normal tissues, classify cancer types, and identify molecular subtypes 
within specific cancers. It is also used for cancer prognosis and treatment prediction by integrating clinical 
parameters, biomarker profiles, and genomic features to predict patient survival outcomes, treatment 
responses, drug resistance patterns, and recurrence risk. Figure 6B reveals that SVM maintained strength 
in QSAR and SAR modeling while its connections to protein analysis weakened relative to RF in the later 
period. 
 
Logistic Regression (LR) is a widely used, interpretable statistical method in biomedical research, often 
co-occurring with key concepts such as proteins, gene expression, biomarkers, prognosis, medical 
imaging, cancer, and COVID-19. In protein function prediction, LR analyzes amino acid composition, 
sequence features, and structural properties to classify proteins into functional or structural categories. The 
model’s key advantage is providing interpretable coefficients that indicate the relative contribution of each 
feature to the classification decision, allowing researchers to identify which amino acid properties or 
structural features most strongly influence the predictions.  
 
This interpretability is equally valuable in gene expression classification, where LR helps identify 
differentially expressed genes. For biomarker validation and diagnostics, LR models predict binary 
outcomes, such as disease/healthy or responder/non-responder and provide clinically meaningful odds 
ratios for diagnostic decision making. In prognostic modeling, LR uses a similar binary outcome prediction, 
by evaluating clinical parameters, biomarker profiles, and patient demographics to forecast outcomes like 
mortality/survival, disease recurrence/remission, favorable/unfavorable prognosis. 
 
LR is used in COVID-19 diagnosis, severity prediction, and mortality by integrating comorbidities, vital 
signs, and biomarkers, supporting risk stratification and clinical decision-making. These diverse 
applications underscore LR’s strong alignment with core biomedical research themes, making it a 
foundational tool for interpretable and clinically relevant modeling. Figure 6B illustrates the increased 
adaptability of Logistic Regression, likely due to the capability for multi-class classification and probability-
based outputs, unlike linear regression, which is limited to continuous predictions.  
 
As seen in Figure 6B, the 2020-2024 period witnessed the emergence of specialized deep learning 
approaches barely present earlier, such as AlphaFold. This period also saw a surge in the use of Graph 
Neural Networks (GNN) for molecular interaction modeling, Graph Adversarial Networks (GAN) for 
synthetic data generation, and Pattern Recognition for imaging applications and diagnostic challenges.   
Another major shift in recent years is the integration of NLP techniques into biomedical research, 
highlighted by the rise of models like BERT for mining clinical reports and analyzing biomedical texts. This 

https://www.nature.com/articles/s41392-023-01381-z
https://www.sciencedirect.com/science/article/abs/pii/S1574013719300899
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specialization reflects the field's maturation beyond applying generic AI methods toward developing tailored 
approaches for specific biomedical challenges.Research priorities shifted substantially between the two 
periods. Protein sequence and structure analysis and gene expression analysis grew significantly in 2020-
2024(Figure 6B). Biomarker discovery and imaging applications also experienced dramatic growth, while 
disease-specific research expanded considerably, with COVID-19 emerging as a major focus and cancer 
research diversifying across multiple subtypes.  
 

Substances in biomedical research 
 
This comparison provides strategic insight into under-explored therapeutic opportunities, and it highlights 
substance classes that may benefit from increased research investment or innovative approaches to bridge 
the gap between scientific discovery and clinical application (see Figure 7). Please note that “substance 
classes” refers to categories of CAS-indexed substances with recognized potential therapeutic 
applications.   
 

 
 
Figure 7: Bar chart representation of key therapeutic substance classes, based on publication frequency 
for (A) journal and (B) patent publications. Source: CAS Content Collection. 
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Small molecule drugs continue to dominate pharmaceutical research and development, with AI 
technologies accelerating their discovery. ML-based virtual screening, QSAR modeling for pharmacokinetic 
prediction, and deep learning systems optimizing synthetic pathways are now integral to this process. 
These innovations build upon the inherent advantages of small molecules, including established synthesis 
routes, well-characterized pharmacokinetics, oral bioavailability, and cost-effective manufacturing. 
 
Protein/peptide therapeutics constitute the second-most-researched category. Tools like AlphaFold have 
revolutionized protein structure prediction, enabling the design and optimization of therapeutic proteins 
such as insulin for diabetes, tissue plasminogen activator for strokes, and monoclonal antibodies for cancer 
and autoimmune diseases. ML models further enhance this field by predicting protein-protein interactions 
and optimizing peptide stability.  
 
Compounds with salt and salts benefit from AI-powered formulation optimization algorithms that predict 
solubility, bioavailability, and stability, reflecting the importance of drug formulation and bioavailability 
optimization. Polymers, which often serve as crucial therapeutic delivery systems, are being enhanced 
through AI-designed nanoparticle formulations, ML-optimized hydrogel properties, and predictive modeling 
for targeted drug delivery improving therapeutic efficacy and tissue specificity.  
 
Coordination compounds are another promising class, where AI assists in ligand design and metal-
organic framework (MOF) optimization. These compounds are being refined through computational 
chemistry and AI models that predict metal-ligand interactions and biological activity. 
 

 
Applications of AI models in materials science 
 

Overview    
 
In materials science, understanding and predicting the complex relationships between material 
composition, structural features, and properties is essential for accelerating material discovery. The data 
involved are often multidimensional, hierarchical, heterogeneous, and generated through high-throughput, 
data-intensive processes. AI, particularly ML, is revolutionizing the field by enabling the analysis of these 
complex datasets. We analyzed the CAS Content Collection to identify key materials science concepts 
where AI methods are applied and assessed their significance in materials discovery and property 
prediction (see Figure 8). 
 

https://www.cas.org/resources/cas-insights/defining-the-path-to-tbk1-inhibition-with-qsar-modeling
https://www.cas.org/resources/cas-insights/metal-organic-frameworks
https://www.cas.org/resources/cas-insights/metal-organic-frameworks
https://www.cas.org/resources/cas-insights/materials-science-trends-2025
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Figure 8: Conceptual landscape of AI-driven materials science publications, categorized into seven 
categories. Each category includes representative concepts, with color coding red (highest) to blue (lowest) 
indicating publication frequency. Source: CAS Content Collection. 
 
Energy storage is the most AI-intensive research area in Applications, reflecting the global need for 
advanced battery technologies and sustainable energy solutions. ML techniques have become potent tools 
for battery material innovation, with researchers utilizing three main strategies: direct property predictions, 
machine learning potentials, and inverse design. The high concentration of AI research in this field stems 
from the complex multi-scale nature of battery systems, where traditional experimental approaches often 
fall short in optimizing the intricate relationships between material composition, structure, and 
electrochemical performance. 
 
In the Materials and the Devices categories, the significant AI activity in ceramics, piezoceramics, 
sensors, and field effect transistors reflects the sophisticated nature of these materials and their devices. 
These advanced materials often exhibit complex structure-property relationships that are ideal candidates 
for ML approaches.  
 
In Structural Features, we found that convolutional neural networks (CNNs) along with computer vision 
are used for microstructural analysis by enabling automated classification, segmentation, and feature 
extraction from microscopy images. These tools are helping uncover structure-property relationships that 
were previously difficult to quantify. In metallurgy, targeted AI approaches are advancing superalloy 
development, while systems like CAMEO (Closed-Loop Autonomous Materials Exploration and 
Optimization) enable combinatorial metallurgy by integrating AI with high-throughput experimentation. 

https://pubs.rsc.org/en/content/articlelanding/2023/ya/d3ya00040k
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Furthermore, machine learning tools for 3D tomography data are enhancing the analysis of porous 
materials, allowing for more accurate modeling of properties like permeability and mechanical strength. 
 
Dielectric constant and electric conductivity are the leading concepts in Properties, while piezoelectricity 
leads in Phenomena. In Simulation and Modeling, computational modeling shows high AI adoption, 
which aligns with machine learning's natural compatibility with data analysis tasks. 
 
The moderate AI activity areas represented by purple and mixed-colored regions in Figure 7 are fields 
where AI adoption is accelerating but have room for improvement. For example, low activity in some 
materials areas, predominantly shown in blue, represents some of science's most established and 
fundamental domains, creating a paradoxical situation where the most mature fields show the least AI 
integration. Composite materials and polymers are prime examples of this category.  
 
However, specialized AI models are being developed to address specific challenges. The model 
polyBERT, treats polymer structures as a chemical language, enabling more effective modeling of complex 
polymer systems. For crystalline materials, models like MEGNet, CGCNN, and SchNet incorporate crystal 
symmetry and quantum interactions, while ALIGNN captures higher-order atomic interactions essential for 
accurate alloy property prediction. 
 

Co-occurrences of AI models and materials science concepts 
 
As with our biomedical analysis, we looked closely at AI methods and co-occurring concepts in materials 
science. We found that traditional ML models such as Random Forest (RF), Support Vector Machine 
(SVM), Gradient Boosting Machines (GBM), and Decision Trees (DT) are widely used for prediction and 
feature importance analysis, largely due to the high-dimensional data with non-linear relationships that is 
common in materials informatics (see Figure 9). 
 
 

https://www.science.org/doi/10.1126/sciadv.adi3245
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Figure 9: Sankey diagram illustrating the co-occurrence of AI methods and materials science concepts 
from (A) 2015-2019 and (B) 2020-2024. Source: CAS Content Collection. 
 
RF models are widely used and distributed across all concept areas. Along with GBM models, they show 
strong co-occurrences with complex, heterogeneous materials due to their ability to model nonlinear 
relationships and handle mixed data types. They’re often used for heterogeneous composites, predicting 
mechanical properties, and failure analysis by capturing the complex interactions between matrix and 
reinforcement.  
 
We see these co-occurring with alloys, where RF is used for mapping nonlinear relationships in alloy 
compositions, aiding in high-entropy alloy design, precipitation strengthening prediction, and heat treatment 
optimization. GB is increasingly applied for precise property tuning, such as optimizing yield strength or 
corrosion resistance. 
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SVM is more frequently used with materials that have well-defined structure-property relationships. This 
type of model is effective for classifying alloy types and thresholds using fixed-dimensional feature vectors. 
Temperature-dependent properties also often follow non-linear patterns and depend on composition, 
processing history, and environmental conditions, which tree-based methods and SVMs capture effectively. 
 
For structural features like microstructure, ensemble models are employed to identify features from 
complex images; classify grain boundaries, phases, and defects; and predict crystal structures, often 
treated as classification problems requiring symmetry-aware models. Surface properties, which span 
atomic to macroscopic scales, involve complex patterns in surface energy and reactivity. These 
applications demand the preprocessing of image data, extraction of multi-scale features, and encoding of 
symmetry and periodicity, especially for catalysis, corrosion, and adhesion studies, often requiring 
integration with molecular modeling. 
 
Application domains have expanded considerably, with batteries research showing dramatic growth. 
Figures 9A and 9B confirm RF’s strong correlation with electrochemical processes, handling complex 
interactions for battery capacity prediction, electrode material selection, and time-dependent processes.  
The emergence of energy-related applications (Energy Storage, Power Generation) in the 2020-2024 
period demonstrates the field's diversification. Long-Short Term Memory (LSTM) captures temporal 
dynamics which are crucial for battery degradation prediction and cycling performance forecasting. Another 
emerging correlation is the Reinforcement Learning (RL) which is capable of optimizing charging protocols 
and material usage and can be used in battery management systems. Kalman filters are also observed 
with batteries and secondary batteries which are used to track material state during processing and 
forecast battery state-of-health estimation and remaining useful life prediction.  
Transformers are used in extracting synthesis procedures and material properties from scientific literature 
and capturing long-range dependencies in complex material descriptions. Convolutional Neural Networks 
(CNNs) and GANs automate feature extraction from 2D/3D structures and support property prediction and 
pattern recognition. Despite their power, they require more data and computation and offer lower 
interpretability, thus complementing rather than replacing traditional models. NNs are increasingly used in 
image-based analysis and generative design, while traditional methods maintain advantages in 
composition-property mapping with limited datasets. This is another reason why Neural Networks and 
traditional models are used in combination. Another development is materials specific CNN architectures 
incorporating symmetry and physical constraints, while GNNs are gaining traction for atomic and molecular 
structures.  
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Substances in materials science 
 
Returning to categories of CAS-indexed substances, we analyzed the number of publications relating to 
these substances in materials science (see Figure 10). 
 

 
 
Figure 10: Bar chart representation of key substance classes in materials science, based on publication 
frequency for (A) journal and (B) patent publications. Source: CAS Content Collection. 
 
The dominance of organic/inorganic small molecules in AI-driven research reflects the field's 
computational advantages and data abundance in handling small structures in terms of computational cost 
versus larger complex systems such as polymers. With approximately 6,500 journal articles, this category 
benefits from decades of accumulated chemical databases.  
 
Small molecules are particularly amenable to ML approaches because their properties can be effectively 
encoded using molecular descriptors, fingerprints, and graph-based representations. The high volume of 
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research in this area also indicates the pharmaceutical and chemical industries' strong investment in AI for 
drug discovery, catalyst design, and molecular property prediction.  
 
Elements, ranking second with around 5,500 articles, similarly benefit from extensive databases and the 
relative simplicity of their structures, making them ideal candidates for AI-driven property prediction and 
materials discovery. 
 
Tabular inorganic materials, with approximately 4,500 journal articles, represent another area where AI 
has found substantial applications. These materials — which include ceramics, oxides, and other 
structured inorganic compounds — benefit from crystallographic databases and systematic property 
measurements that provide the large datasets necessary for effective machine learning. The structured 
nature of these materials allows for consistent feature engineering based on crystal structure, composition, 
and bonding characteristics. This category's prominence in AI research likely reflects the materials science 
community's focus on discovering new functional materials for energy storage, catalysis, and electronic and 
magnetic applications. 
 
Polymer research shows moderate AI adoption with around 1,800 journal articles, which may seem low 
given the industrial importance of polymers. This likely reflects the unique challenges polymers present to 
AI applications, including their complex chain structures, molecular weight distributions, and processing-
dependent properties. However, the growing research volume suggests increasing success in applying AI 
to polymer property prediction, synthesis, and processing optimization. 
 
Another important finding from our analysis is how patent families represent only a fraction of journal 
articles across all materials science categories. The disparity between the number of journals and patents 
suggests that much of the AI research in materials science remains in the fundamental or exploratory 
stage, with significant time lags between academic discoveries and practical applications worthy of patent 
protection at the commercial stage. 
 
The relatively small patent numbers may also reflect the challenge of translating AI-driven materials 
discoveries into commercially viable technologies, as many AI applications in this field focus on property 
prediction and fundamental understanding rather than immediately patentable inventions. The consistent 
ratio across different material types indicates that the academic-to-commercial translation challenge is 
universal across materials science, rather than being specific to specific material classes. 
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AI in process management 
 
AI is transforming process management by enabling smarter, faster, and more adaptive decision-making. 
Analyzing AI's role in this domain reveals how automation, predictive analytics, and real-time optimization 
can drive operational excellence across industries (see Figure 11). 

 

 
 
Figure 11: Framework illustrating the role of artificial intelligence in modernizing research, development, 
and operational processes across scientific domains. 
 
AI-driven optimization is widely used in additive manufacturing, petrochemical industries, plastic 
processing, metallurgy, flow chemistry, catalytic processes, and drug discovery and synthesis.  
Commonly used models include response surface methodology (RSM), design of experiments along  
with ML techniques like ANNs, hybrid models, PINN, LLMs, and Reinforcement Learning approaches.  
Let’s explore a few other technologies that are extending predictive modeling into real-time decision-
making and automation: 
 

• Real-time monitoring: these systems analyze streaming data using ML to detect patterns, trends and 
early warning signs, facilitating dynamic forecasting and proactive decision making. Key innovations 
include autonomous decision making, where parameters are automatically adjusted based on real-time 
inputs; predictive maintenance, which anticipates failures before they occur; and self-improving models 
that adjust to changing conditions. Additionally, real-time data visualization and intelligent alert systems 
are transforming how operators interact with live process data. These advancements are being applied 
across industries like  automated chromatography systems and drug reaction monitoring in 
pharmaceutical manufacturing. We’re also seeing their use in property optimization in polymer 
production, solid waste analysis in waste management, environmental monitoring, energy and resource 
management for large-scale hydrogen production, and cloud-based energy management for aging 
infrastructure. 
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• Soft sensors: Using real-time data from physical sensors, these leverage AI and statistical models to 
estimate variables that are difficult or costly to measure directly. They are widely applied across 
industries including bioprocesses monitoring and monitoring wastewater and air quality. In chemical 
process control, soft sensors are used to monitor complex sulfide ore floatation, isomerization, reactive 
distillation, and gasoline blending. 

 

• Digital twins: These innovations are virtual replicas of physical systems that are rapidly evolving with 
AI integration to enable real-time optimization, predictive analytics, and autonomous operations. AI 
enhances digital twins by learning from historical and real-time data to simulate future states, detect 
anomalies, and predict failures, transforming them from static models into resilient, self-optimizing 
systems. In manufacturing, AI-driven digital twins predict equipment failures, optimize production 
processes, and detect quality issues using sensors and images. In healthcare, they simulate patient 
conditions, support personalized medicines, model diseases, clinical trials simulation, and optimize 
immunotherapy. In environmental and sustainability domains, AI-powered digital twins are applied in 
geological carbon storage, ore waste processing, and resource management. They also support 
materials science, enabling automated discovery, defect analysis, and inverse molecular design. 

 

Challenges to the use of AI in scientific research  
 
AI has clearly made many positive contributions to all scientific research fields, and it will continue to do so 
as it advances. However, these innovations are not without challenges that researchers and data scientists 
must address to ensure AI reaches its full potential in science. Some of the most pressing challenges 
include: 
 

• Data privacy and security: Ensuring data privacy and security is one of the largest challenges in 
implementing AI since it needs a large volume of sensitive data for training and operation. Issues occur 
when sensitive information is gathered and used without proper permission, or when sensitive 
information is leaked or stolen from AI systems. Scientific datasets may contain unpublished 
experimental results, novel compound structures, and proprietary synthesis methods that represent 
significant competitive advantages. When researchers utilize cloud-based AI platforms or participate in 
collaborative research environments, they face substantial risks of intellectual property exposure. To 
combat the risk, some businesses are implementing safeguards to protect client information and 
maintain trust, with new start-ups finding market niches to safeguard against external AI threats. 

 

• Data quality and bias: Datasets frequently suffer from systematic biases that can propagate through 
AI models, leading to skewed predictions and potentially reinforcing existing research inequities. 
Historical biases in published reaction data, where successful reactions are overrepresented and failed 
experiments underreported, can significantly impair the ability of ML models to explore novel chemical 
space, particularly for inorganic materials. This "publication bias" creates a self-reinforcing cycle where 
AI systems preferentially recommend compounds similar to those already well-studied. Generative AI 
models present additional concerns, as they can manipulate existing data and hallucinate to satisfy 
customer requests at the expense of real evidence. 

 

• Transparency: The "black box" nature of these models can obscure the reasoning behind their 
predictions, making it difficult for researchers to evaluate their reliability or identify potential failure 
modes. A review of explainable AI methods in drug discovery highlighted how the lack of interpretability 
in complex models can undermine trust among medicinal chemists and impede regulatory acceptance 
of AI-guided decisions in pharmaceutical development. This challenge is particularly acute for graph 
neural networks and transformer models that operate on high-dimensional chemical representations, 
where the relationship between input features and predictions becomes highly non-linear. 

 

https://techcrunch.com/2024/12/20/british-university-spinoff-mindgard-protects-companies-from-ai-threats/
https://www.nature.com/articles/s42256-020-00236-4
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• Balancing automation with human expertise: While AI systems can process vast datasets and 
identify patterns beyond human cognitive capacity, they lack the intuition, creativity, and contextual 
understanding that experienced scientists bring to research problems. This may lead to a generation of 
scientists who lack fundamental research skills and conceptual understanding. Conversely, it can also 
lead to “algorithmic aversion” when AI-driven conclusions contradict intuition. 

 

AI models and the future of scientific research 
 
AI is only going to increase in importance for scientific inquiry, and its revolutionary capabilities are already 
being realized in fields such as biomedicine and materials science. As our analysis of the CAS Content 
Collection shows, there are new applications, models, and methods being applied to difficult research 
questions all the time. We can expect breakthroughs in drug discovery, disease diagnosis, materials 
development, and much more to be influenced or entirely driven by AI-powered technologies.  
As AI shifts from tool to collaborative scientific partner, we’re also likely to see new paradigms like inverse 
design and self-driving laboratories redefining scientific methodology toward autonomous discovery 
engines. However, low patent-to-publication ratios indicate much research remains in academia, 
particularly in traditional materials science fields.  
Further AI adoption requires appropriate trust calibration through technical solutions like uncertainty 
quantification and model transparency. The wide-ranging nature of AI’s impact on science and the scope of 
the challenges in implementing it mean that collaboration and visibility will be key to maximizing its benefits 
for scientific advancement. 
 
 
The use of brand names and/or any mention of third-party products or services herein is solely for 
educational purposes and does not imply endorsement by CAS or the American Chemical Society, nor 
discrimination against similar brands, products, or services not mentioned. 
 

 
 

https://www.nature.com/articles/s41573-019-0050-3
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